助成対象詳細
Details
2020 先端技術と共創する新たな人間社会
海外薬剤耐性菌問題実態調査とAIを用いた細菌診断補助システムの臨床検査室への導入により利害関係者に発生する影響の調査
Study of the Global Situation of Drug-resistant Bacteria and the Impact of Introducing an AI-based Bacterial Diagnosis Assistance System into Clinical Laboratories
Study of the Global Situation of Drug-resistant Bacteria and the Impact of Introducing an AI-based Bacterial Diagnosis Assistance System into Clinical Laboratories
企画書・概要
Abstract of Project Proposal
薬剤耐性菌問題の被害は甚大だが、臨床現場は解決には消極的である。理由として薬剤耐性菌問題解決として有効とされる抗菌薬適正利用の要となる臨床検査技師の業務量の多さがある。本研究ではフォアキャスティング/バックキャスティング手法を用いて①AI を用いた細菌診断補助システムの臨床検査室への導入と現場ヒアリング②薬剤耐性菌問題の深刻化する海外での現場調査を通じ、マクロ環境整理を行う。①では、複数の利害関係者で、1)継続的なコミュニケーションによる信頼関係構築2)既存の課題解決手法に対するアセスメントと現場ニーズ、課題聴取3)実証実験までのプロセス整理と安定的な実用化に向けた研究開発実施、現場のフィードバック調査を行う①②で得た知見を医療現場へのAI導入におけるプロセス構築、合意形成>開発>実証実験>アセスメント・改良>実用化、の各段階ごとに、ステークホルダーの信頼関係や導入に付随して生じる問題分析、効果検証といった内部環境分析、AI 技術に関する倫理的議論と法や道徳規範の問題、薬剤耐性菌に関するマクロ環境把握等外部環境分析の2つの観点で整理を行い、医療業界の持続的発展に資する研究成果発表を行う。
The damage caused by the problem of drug-resistant bacteria is enormous, but clinical practice is reluctant to solve it.
The reason is the large amount of work of clinical laboratory technicians, which is the key to the proper use of antibacterial drugs, which is effective in solving the problem of drug-resistant bacteria. In this study, we study a macro environment using forecasting / backcasting methods(① introduction of an AI-based bacterial diagnosis assistance system into clinical laboratories and on-site hearings ② on-site surveys overseas where the problem of drug-resistant bacteria is becoming more serious) . In ①, multiple stakeholders are involved in 1) building a relationship of trust through continuous communication 2) assessing existing problem-solving methods, on-site needs, and listening to problems 3) organizing processes up to demonstration experiments and stable practical application. Conduct research and development for the purpose, conduct on-site feedback surveys ① ② Process construction in introducing AI to medical sites, consensus formation> development> demonstration experiments> assessment / improvement> practical application, stakeholders at each stage From the two perspectives of internal environment analysis such as problem analysis and effect verification that occur with the relationship of trust and introduction, ethical discussions and legal and moral norm issues regarding AI technology, and external environmental analysis such as macro-environmental understanding of drug-resistant bacteria. Organize and present research results that contribute to the sustainable development of the medical industry.
The reason is the large amount of work of clinical laboratory technicians, which is the key to the proper use of antibacterial drugs, which is effective in solving the problem of drug-resistant bacteria. In this study, we study a macro environment using forecasting / backcasting methods(① introduction of an AI-based bacterial diagnosis assistance system into clinical laboratories and on-site hearings ② on-site surveys overseas where the problem of drug-resistant bacteria is becoming more serious) . In ①, multiple stakeholders are involved in 1) building a relationship of trust through continuous communication 2) assessing existing problem-solving methods, on-site needs, and listening to problems 3) organizing processes up to demonstration experiments and stable practical application. Conduct research and development for the purpose, conduct on-site feedback surveys ① ② Process construction in introducing AI to medical sites, consensus formation> development> demonstration experiments> assessment / improvement> practical application, stakeholders at each stage From the two perspectives of internal environment analysis such as problem analysis and effect verification that occur with the relationship of trust and introduction, ethical discussions and legal and moral norm issues regarding AI technology, and external environmental analysis such as macro-environmental understanding of drug-resistant bacteria. Organize and present research results that contribute to the sustainable development of the medical industry.
プロジェクト情報
Project
プログラム名(Program)
|
2020 先端技術と共創する新たな人間社会
|
---|---|
助成番号(Grant Number)
|
D20-ST-0030
|
題目(Project Title)
|
海外薬剤耐性菌問題実態調査とAIを用いた細菌診断補助システムの臨床検査室への導入により利害関係者に発生する影響の調査
Study of the Global Situation of Drug-resistant Bacteria and the Impact of Introducing an AI-based Bacterial Diagnosis Assistance System into Clinical Laboratories |
代表者名(Representative)
|
山田 達也 / Tastuya Yamada
|
代表者所属(Organization)
|
大阪大学医学部医学科、株式会社GramEye
Osaka Univesity Faculty of Medicine / GramEye Inc. |
助成金額(Grant Amount)
|
¥6,800,000
|
リンク(Link)
|
|
活動地域(Area)
|
|